Publications


Burda, I., Martin, A.C., Roeder, A.H.K., and Collins, M.A. (2023). The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 58, 2850–2866. 10.1016/j.devcel.2023.11.003

Jackson, J. A., Romeo, N. Mietke, A., Burns, K.J., Totz, J., Martin, A.C., Dunkel, J., Imran Alsous, J. Scaling behaviour and control of nuclear wrinkling. Nat. Phys. 1–9 (2023) doi:10.1038/s41567-023-02216-y

Camuglia Jaclyn M., Yeh Anna R.A., Martin A. C. Extracellular Tension and Tissue Morphogenesis. Encyclopedia of Biological Chemistry III. 5:317-325.

Imran Alsous J., Romeo N., Jackson J.A., Mason F.M., Dunkel J., Martin A.C. Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. PNAS. 118(10):e2019749118.

Denk-Lobnig, M., Heer N.C., and Martin A.C. Combinatorial patterns of graded RhoA activation and uniform F-actin depletion promote tissue curvature. Development. May 13: dev.199232 Online ahead of print

Clarke D.N, Martin A.C.  Actin-based force generation and cell adhesion in tissue morphogenesis. Curr Biol. 2021 May 24;31(10):R667-R680.

Yevick H. G., Miller P. W., Dunkel J., Martin A. C. Structural redundancy in supracellular actomyosin networks enables robust tissue folding. Developmental Cell, Published 2019 Jul 25. doi: 10.1016/j.devcel.2019.06.015

Ko C. S., Tserunyan, V., Martin A. C. Microtubules stabilize intercellular contractile force transmission during tissue folding. J. Cell Biol. 2019 June 21. doi: 10.1083/jcb.201902011

Imran Alsous J., Martin A. C. ZnUMBA Crosses the Border. Developmental Cell, Published 2019 Feb 25. doi: 10.1016/j.devcel.2019.02.007

Yevick H. G., Martin A. C. Quantitative analysis of cell shape and the cytoskeleton in developmental biology. WIREs Developmental Biology, Published 2018 Aug 31. doi: 10.1002/wdev.333

Atia, L., Dapeng, B., Sharma, Y., Mitchel, J. A., Gweng, B., Koehler, S. A., DeCamp, S. J., Lan, B., Kim, J. H., Hirsch, R., Pegoraro, A. F., Lee, K. H., Starr, J. R., Weitz, D. A., Martin A. C., Park, J., Butler, J. P., Fredberg, J. J. Geometric constraints during epithelial jamming. Nature Physics, Published 2018 Apr. doi: 10.1038/s41567-018-0089-9

Heer N. C., Martin A. C. Tension, contraction and tissue morphogenesis. Development, Published 2017 Nov. doi: 10.1242/dev.151282

Chanet S., Sharan R., Khan Z., Martin A. C. Myosin 2-induced mitotic rounding enables columnar epithelial cells to interpret cortical spindle positioning cues. Current Biology, 2017 November 6. doi: http://dx.doi.org/10.1016/j.cub.2017.09.039

Chanet S., Miller C. J., Vaishnav E. D., Ermentrout B., Davidson L. A. Martin A. C.Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat Commun. 2017 May 15;8:15014. doi: 10.1038/ncomms15014

Heer N. C., Miller P. W., Chanet S., Stoop N., Dunkel J., Martin A. C. Actomyosin-based tissue folding requires a multicellular myosin gradient. Development, Published 2017 May 15. doi: 10.1242/dev.146761

Denk-Lobnig M., Martin A. C. Modular regulation of Rho family GTPases in development. Small GTPases, 2017 Mar 17:1-8. doi: 10.1080/21541248.2017.1294234

Vasquez C. G., Heissler S. M., Billington N., Sellers, J. R., Martin A. C. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding. eLife, Published online 2016 Dec 30. doi: 10.7554/eLife.20828

Coravos J. S., Martin A. C. Actomyosin Pulsing in Tissue Integrity Maintenance during Morphogenesis. Trends Cell Biol., Published online 2016 Dec 15. doi: 10.1016/j.tcb.2016.11.008

Coravos J. S., Martin A. C. Apical sarcomere-like actomyosin contracts nonmuscle Drosophila epithelial cells. Dev Cell. 2016 Nov 7;39(3):346-358. doi: 10.1016/j.devcel.2016.09.023

Mason F. M., Xie S., Vasquez C. G., Tworoger M., Martin A. C. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. J. Cell Biol. 2016 Aug 29;214(5):603-17. doi: 10.1083/jcb.201603077

Xie S., Mason F. M., Martin A. C. Loss of Gα12/13 exacerbates apical area-dependence of actomyosin contractility. Mol Biol Cell. 2016 Nov 7;27(22):3526-3536. doi: 10.1091/mbc.E16-05-0305

Jodoin J. N., Martin A. C. Abl suppresses cell extrusion and intercalation during epithelium folding. Mol Biol Cell. 2016 Sep 15;27(18):2822-32. doi: 10.1091/mbc.E16-05-0336

Vasquez C. G., Martin A. C. Force transmission in epithelial tissues. Dev Dyn. 2016 Jan 12. doi: 10.1002/dvdy.24384

Jodoin J. N., Coravos J. S., Chanet S., Vasquez C. G., Tworoger M., Kingston E. R., Perkins L. A., Perrimon N., Martin A. C. Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. Dev Cell. 2015 Dec 21;35(6):685-97. doi: 10.1016/j.devcel.2015.11.018

Rodal A. A., Del Signore S. J., Martin A. C. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton (Hoboken). 2015 Jun 13. doi: 10.1002/cm.21228.

Xie S., Martin A. C. Intracellular signalling and intercellular coupling coordinate heterogeneous contractile eventsto facilitate tissue folding. Nat Commun. 2015 May 26;6:7161. doi: 10.1038/ncomms8161

Mason F. M., Martin A. C. Crumbling under Pressure. Dev Cell, vol. 33, no. 2, pp. 122–124, Apr. 2015.

Vasquez C. G., Martin A. C. Cell biology: Death drags down the neighbourhood.” Nature, vol. 518, no. 7538, pp. 171–173, Feb. 2015.

Vasquez C.G., Tworoger, M., Martin A. C. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis. J. Cell Biol. 2014. Aug 4;206(3):435-50.

Martin A. C., Goldstein B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development, 2014. 141(10):1987-98.

Chanet S., Martin A. C. Mechanical force sensing in tissues. Prog. Mol. Biol. Transl. Sci. 2014;126:317-52.

Mason F. M., Tworoger M., Martin A. C. Apical domain polarization promotes actin-myosin assembly to drive ratchet-like apical constriction. Nat. Cell Biol. 2013. 15(8):926-36. doi: 10.1038/ncb2796.

Gelbart M. A., He B., Martin A. C., Thiberge S., Wieschaus E. F., Kaschube M. Volume conservation principle involved in cell lengthening and nucleus movement during tissue morphogenesis. PNAS, 2012, 188(5):735-749.

Mason F. M., Martin A. C. Tuning cell shape change with contractile ratchets, Curr Opin Genet Dev. 2011. 21(5):671-679. doi:10.1016/j.gde.2011.08.002.

Martin A. C., Gelbart M., Fernandez-Gonzalez R., Kaschube M.,Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 2010. 188(5):735-49.

Martin A. C., Kaschube M., Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature. 2009. 457(7228):495-9.

Martin A. C. Pulsation and stabilization: Contractile forces that underlie morphogenesis. Dev. Biol. 2010. 341(1):114-25.

Martin A. C., Wieschaus, E. F. Tensions divide. Nat. Cell Biol. 2010. 12(1):5-7.

*Sun Y., *Martin A. C., Drubin, D.G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell. 2006. 11(1):33-46.
*These authors contributed equally to this work.

Martin A. C., Welch, M. D., Drubin, D. G. Arp2/3 ATP hydrolysis-catalysed branch dissociation is critical for endocytic force generation. Nat. Cell Biol. 2006. 8(8):826-33.

Martin A. C., Xu, X-P., Rouiller, I., Kaksonen, M., Sun, Y., Belmont, L., Volkmann, N., Hanein, D., Welch, M., and Drubin, D. G. Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function. J. Cell Biol. 2005. 168: 315-328.

Videos from Lab Research

Developmental Transition

Movie of myosin (green) and membrane (magenta) in embryo undergoing gastrulation. Pulsed contractions identified from the embryo are shown in white overlay. Bolded white pulses are ratcheted pulses. Lighter white pulses are unconstricting or unratcheted pulses. Cells start with unratcheted or unconstricting pulses and transition to having ratcheted pulses. Video / Shicong ‘Mimi’ Xie

Egg Cell Development

We also discovered an actomyosin transition in the developing egg cell, the oocyte. The oocyte (bottom, big cell) grows through cytoplasm (blue) transported from nurse cells (top).  Shrinking nurse cells initiate actomyosin (red) waves part-way through this process, which squeezes the last bit of cytoplasm into the oocyte. Video / Jasmin Imran Alsous

Actin Dynamics

Radial cell polarity of Rho Kinase organizes myosin, actin, and adherens junctions in constricting cells. Video / Frank Mason

Rok Inhibition

Inhibition of Rok disrupts actin filament condensation and organization in across the apical surface. Video / Adam Martin

Armadillo

Contractile activity tears tissue apart when adherens junctions are disrupted, demonstrating critical role for adherens junctions in integrating contractile forces across the tissue. Video / Adam Martin

Actin Polymerization

Contractile activity tearsLimiting actin polymerization with the drug Cytochalasin D disrupts stable connections between cells, suggesting that robust actin filament assembly is critical to maintain stable attachments between cells. Video / Mike Tworoger

Laser Incisions

Laser incisions result in elastic recoil of the ventral furrow tissue, demonstrating high levels of tension. Video / Soline Chanet

Pulses of Rio-kinase

Embryo expressing a Venus-tagged Rho-Kinase and Cherry-tagged myosin demonstrates that both myosin could be regulated by dynamic upstream signals. Video / Claudia Vasquez

Rogues Gallery

Mutants have differing affects on myosin organization in each cell, but most of these mutants disrupt pulsing behavior. Video / Claudia Vasquez